3.164 \(\int \frac{(a+a \sec (e+f x))^{5/2}}{(c+d \sec (e+f x))^2} \, dx\)

Optimal. Leaf size=329 \[ \frac{2 a^{7/2} (c-d) \sqrt{c+d} \tan (e+f x) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a-a \sec (e+f x)}}{\sqrt{a} \sqrt{c+d}}\right )}{c^2 d^{3/2} f \sqrt{a-a \sec (e+f x)} \sqrt{a \sec (e+f x)+a}}+\frac{2 a^{7/2} \tan (e+f x) \tanh ^{-1}\left (\frac{\sqrt{a-a \sec (e+f x)}}{\sqrt{a}}\right )}{c^2 f \sqrt{a-a \sec (e+f x)} \sqrt{a \sec (e+f x)+a}}-\frac{a^{7/2} (c-d)^2 \tan (e+f x) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a-a \sec (e+f x)}}{\sqrt{a} \sqrt{c+d}}\right )}{c d^{3/2} f (c+d)^{3/2} \sqrt{a-a \sec (e+f x)} \sqrt{a \sec (e+f x)+a}}-\frac{a^3 (c-d)^2 \tan (e+f x)}{c d f (c+d) \sqrt{a \sec (e+f x)+a} (c+d \sec (e+f x))} \]

[Out]

(2*a^(7/2)*ArcTanh[Sqrt[a - a*Sec[e + f*x]]/Sqrt[a]]*Tan[e + f*x])/(c^2*f*Sqrt[a - a*Sec[e + f*x]]*Sqrt[a + a*
Sec[e + f*x]]) - (a^(7/2)*(c - d)^2*ArcTanh[(Sqrt[d]*Sqrt[a - a*Sec[e + f*x]])/(Sqrt[a]*Sqrt[c + d])]*Tan[e +
f*x])/(c*d^(3/2)*(c + d)^(3/2)*f*Sqrt[a - a*Sec[e + f*x]]*Sqrt[a + a*Sec[e + f*x]]) + (2*a^(7/2)*(c - d)*Sqrt[
c + d]*ArcTanh[(Sqrt[d]*Sqrt[a - a*Sec[e + f*x]])/(Sqrt[a]*Sqrt[c + d])]*Tan[e + f*x])/(c^2*d^(3/2)*f*Sqrt[a -
 a*Sec[e + f*x]]*Sqrt[a + a*Sec[e + f*x]]) - (a^3*(c - d)^2*Tan[e + f*x])/(c*d*(c + d)*f*Sqrt[a + a*Sec[e + f*
x]]*(c + d*Sec[e + f*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.337278, antiderivative size = 329, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 6, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {3940, 180, 63, 206, 51, 208} \[ \frac{2 a^{7/2} (c-d) \sqrt{c+d} \tan (e+f x) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a-a \sec (e+f x)}}{\sqrt{a} \sqrt{c+d}}\right )}{c^2 d^{3/2} f \sqrt{a-a \sec (e+f x)} \sqrt{a \sec (e+f x)+a}}+\frac{2 a^{7/2} \tan (e+f x) \tanh ^{-1}\left (\frac{\sqrt{a-a \sec (e+f x)}}{\sqrt{a}}\right )}{c^2 f \sqrt{a-a \sec (e+f x)} \sqrt{a \sec (e+f x)+a}}-\frac{a^{7/2} (c-d)^2 \tan (e+f x) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a-a \sec (e+f x)}}{\sqrt{a} \sqrt{c+d}}\right )}{c d^{3/2} f (c+d)^{3/2} \sqrt{a-a \sec (e+f x)} \sqrt{a \sec (e+f x)+a}}-\frac{a^3 (c-d)^2 \tan (e+f x)}{c d f (c+d) \sqrt{a \sec (e+f x)+a} (c+d \sec (e+f x))} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[e + f*x])^(5/2)/(c + d*Sec[e + f*x])^2,x]

[Out]

(2*a^(7/2)*ArcTanh[Sqrt[a - a*Sec[e + f*x]]/Sqrt[a]]*Tan[e + f*x])/(c^2*f*Sqrt[a - a*Sec[e + f*x]]*Sqrt[a + a*
Sec[e + f*x]]) - (a^(7/2)*(c - d)^2*ArcTanh[(Sqrt[d]*Sqrt[a - a*Sec[e + f*x]])/(Sqrt[a]*Sqrt[c + d])]*Tan[e +
f*x])/(c*d^(3/2)*(c + d)^(3/2)*f*Sqrt[a - a*Sec[e + f*x]]*Sqrt[a + a*Sec[e + f*x]]) + (2*a^(7/2)*(c - d)*Sqrt[
c + d]*ArcTanh[(Sqrt[d]*Sqrt[a - a*Sec[e + f*x]])/(Sqrt[a]*Sqrt[c + d])]*Tan[e + f*x])/(c^2*d^(3/2)*f*Sqrt[a -
 a*Sec[e + f*x]]*Sqrt[a + a*Sec[e + f*x]]) - (a^3*(c - d)^2*Tan[e + f*x])/(c*d*(c + d)*f*Sqrt[a + a*Sec[e + f*
x]]*(c + d*Sec[e + f*x]))

Rule 3940

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Di
st[(a^2*Cot[e + f*x])/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]]), Subst[Int[((a + b*x)^(m - 1/2)*(c
 + d*x)^n)/(x*Sqrt[a - b*x]), x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d,
 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && IntegerQ[m - 1/2]

Rule 180

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_))^(q_), x
_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p*(g + h*x)^q, x], x] /; FreeQ[{a, b, c, d,
e, f, g, h, m, n}, x] && IntegersQ[p, q]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{(a+a \sec (e+f x))^{5/2}}{(c+d \sec (e+f x))^2} \, dx &=-\frac{\left (a^2 \tan (e+f x)\right ) \operatorname{Subst}\left (\int \frac{(a+a x)^2}{x \sqrt{a-a x} (c+d x)^2} \, dx,x,\sec (e+f x)\right )}{f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}\\ &=-\frac{\left (a^2 \tan (e+f x)\right ) \operatorname{Subst}\left (\int \left (\frac{a^2}{c^2 x \sqrt{a-a x}}-\frac{a^2 (c-d)^2}{c d \sqrt{a-a x} (c+d x)^2}+\frac{a^2 \left (c^2-d^2\right )}{c^2 d \sqrt{a-a x} (c+d x)}\right ) \, dx,x,\sec (e+f x)\right )}{f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}\\ &=-\frac{\left (a^4 \tan (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a-a x}} \, dx,x,\sec (e+f x)\right )}{c^2 f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}+\frac{\left (a^4 (c-d)^2 \tan (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a-a x} (c+d x)^2} \, dx,x,\sec (e+f x)\right )}{c d f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}-\frac{\left (a^4 \left (c^2-d^2\right ) \tan (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a-a x} (c+d x)} \, dx,x,\sec (e+f x)\right )}{c^2 d f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}\\ &=-\frac{a^3 (c-d)^2 \tan (e+f x)}{c d (c+d) f \sqrt{a+a \sec (e+f x)} (c+d \sec (e+f x))}+\frac{\left (2 a^3 \tan (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{1-\frac{x^2}{a}} \, dx,x,\sqrt{a-a \sec (e+f x)}\right )}{c^2 f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}+\frac{\left (a^4 (c-d)^2 \tan (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a-a x} (c+d x)} \, dx,x,\sec (e+f x)\right )}{2 c d (c+d) f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}+\frac{\left (2 a^3 \left (c^2-d^2\right ) \tan (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{c+d-\frac{d x^2}{a}} \, dx,x,\sqrt{a-a \sec (e+f x)}\right )}{c^2 d f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}\\ &=\frac{2 a^{7/2} \tanh ^{-1}\left (\frac{\sqrt{a-a \sec (e+f x)}}{\sqrt{a}}\right ) \tan (e+f x)}{c^2 f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}+\frac{2 a^{7/2} (c-d) \sqrt{c+d} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a-a \sec (e+f x)}}{\sqrt{a} \sqrt{c+d}}\right ) \tan (e+f x)}{c^2 d^{3/2} f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}-\frac{a^3 (c-d)^2 \tan (e+f x)}{c d (c+d) f \sqrt{a+a \sec (e+f x)} (c+d \sec (e+f x))}-\frac{\left (a^3 (c-d)^2 \tan (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{c+d-\frac{d x^2}{a}} \, dx,x,\sqrt{a-a \sec (e+f x)}\right )}{c d (c+d) f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}\\ &=\frac{2 a^{7/2} \tanh ^{-1}\left (\frac{\sqrt{a-a \sec (e+f x)}}{\sqrt{a}}\right ) \tan (e+f x)}{c^2 f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}-\frac{a^{7/2} (c-d)^2 \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a-a \sec (e+f x)}}{\sqrt{a} \sqrt{c+d}}\right ) \tan (e+f x)}{c d^{3/2} (c+d)^{3/2} f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}+\frac{2 a^{7/2} (c-d) \sqrt{c+d} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a-a \sec (e+f x)}}{\sqrt{a} \sqrt{c+d}}\right ) \tan (e+f x)}{c^2 d^{3/2} f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}-\frac{a^3 (c-d)^2 \tan (e+f x)}{c d (c+d) f \sqrt{a+a \sec (e+f x)} (c+d \sec (e+f x))}\\ \end{align*}

Mathematica [A]  time = 3.7247, size = 280, normalized size = 0.85 \[ \frac{\sqrt{\cos (e+f x)} \sec ^5\left (\frac{1}{2} (e+f x)\right ) (a (\sec (e+f x)+1))^{5/2} (c \cos (e+f x)+d)^2 \left (\frac{4 \sqrt{2} (c-d) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{d} \sin \left (\frac{1}{2} (e+f x)\right )}{\sqrt{c+d} \sqrt{\cos (e+f x)}}\right )}{\sqrt{d} \sqrt{c+d}}-\frac{(c-d)^2 \sin \left (\frac{1}{2} (e+f x)\right ) \left (2 c \cos (e+f x)-\frac{2 (c+2 d) (c \cos (e+f x)+d) \tanh ^{-1}\left (\sqrt{-\frac{d (\sec (e+f x)-1)}{c+d}}\right )}{(c+d) \sqrt{-\frac{d (\sec (e+f x)-1)}{c+d}}}\right )}{d (c+d) \sqrt{\cos (e+f x)} (c \cos (e+f x)+d)}+2 \sqrt{2} \sin ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (e+f x)\right )\right )\right )}{8 c^2 f (c+d \sec (e+f x))^2} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + a*Sec[e + f*x])^(5/2)/(c + d*Sec[e + f*x])^2,x]

[Out]

(Sqrt[Cos[e + f*x]]*(d + c*Cos[e + f*x])^2*Sec[(e + f*x)/2]^5*(a*(1 + Sec[e + f*x]))^(5/2)*(2*Sqrt[2]*ArcSin[S
qrt[2]*Sin[(e + f*x)/2]] + (4*Sqrt[2]*(c - d)*ArcTan[(Sqrt[2]*Sqrt[d]*Sin[(e + f*x)/2])/(Sqrt[c + d]*Sqrt[Cos[
e + f*x]])])/(Sqrt[d]*Sqrt[c + d]) - ((c - d)^2*(2*c*Cos[e + f*x] - (2*(c + 2*d)*ArcTanh[Sqrt[-((d*(-1 + Sec[e
 + f*x]))/(c + d))]]*(d + c*Cos[e + f*x]))/((c + d)*Sqrt[-((d*(-1 + Sec[e + f*x]))/(c + d))]))*Sin[(e + f*x)/2
])/(d*(c + d)*Sqrt[Cos[e + f*x]]*(d + c*Cos[e + f*x]))))/(8*c^2*f*(c + d*Sec[e + f*x])^2)

________________________________________________________________________________________

Maple [B]  time = 0.848, size = 46082, normalized size = 140.1 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(f*x+e))^(5/2)/(c+d*sec(f*x+e))^2,x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(5/2)/(c+d*sec(f*x+e))^2,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 89.0912, size = 4579, normalized size = 13.92 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(5/2)/(c+d*sec(f*x+e))^2,x, algorithm="fricas")

[Out]

[-1/2*(2*(a^2*c^3 - 2*a^2*c^2*d + a^2*c*d^2)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e)
 + (a^2*c^3*d + 4*a^2*c^2*d^2 - 3*a^2*c*d^3 - 2*a^2*d^4 + (a^2*c^4 + 4*a^2*c^3*d - 3*a^2*c^2*d^2 - 2*a^2*c*d^3
)*cos(f*x + e)^2 + (a^2*c^4 + 5*a^2*c^3*d + a^2*c^2*d^2 - 5*a^2*c*d^3 - 2*a^2*d^4)*cos(f*x + e))*sqrt(-a/(c*d
+ d^2))*log((2*(c*d + d^2)*sqrt(-a/(c*d + d^2))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x +
 e) + (a*c + 2*a*d)*cos(f*x + e)^2 - a*d + (a*c + a*d)*cos(f*x + e))/(c*cos(f*x + e)^2 + (c + d)*cos(f*x + e)
+ d)) - 2*(a^2*c*d^2 + a^2*d^3 + (a^2*c^2*d + a^2*c*d^2)*cos(f*x + e)^2 + (a^2*c^2*d + 2*a^2*c*d^2 + a^2*d^3)*
cos(f*x + e))*sqrt(-a)*log((2*a*cos(f*x + e)^2 - 2*sqrt(-a)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x +
e)*sin(f*x + e) + a*cos(f*x + e) - a)/(cos(f*x + e) + 1)))/((c^4*d + c^3*d^2)*f*cos(f*x + e)^2 + (c^4*d + 2*c^
3*d^2 + c^2*d^3)*f*cos(f*x + e) + (c^3*d^2 + c^2*d^3)*f), -1/2*(2*(a^2*c^3 - 2*a^2*c^2*d + a^2*c*d^2)*sqrt((a*
cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + 4*(a^2*c*d^2 + a^2*d^3 + (a^2*c^2*d + a^2*c*d^2)*c
os(f*x + e)^2 + (a^2*c^2*d + 2*a^2*c*d^2 + a^2*d^3)*cos(f*x + e))*sqrt(a)*arctan(sqrt((a*cos(f*x + e) + a)/cos
(f*x + e))*cos(f*x + e)/(sqrt(a)*sin(f*x + e))) + (a^2*c^3*d + 4*a^2*c^2*d^2 - 3*a^2*c*d^3 - 2*a^2*d^4 + (a^2*
c^4 + 4*a^2*c^3*d - 3*a^2*c^2*d^2 - 2*a^2*c*d^3)*cos(f*x + e)^2 + (a^2*c^4 + 5*a^2*c^3*d + a^2*c^2*d^2 - 5*a^2
*c*d^3 - 2*a^2*d^4)*cos(f*x + e))*sqrt(-a/(c*d + d^2))*log((2*(c*d + d^2)*sqrt(-a/(c*d + d^2))*sqrt((a*cos(f*x
 + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + (a*c + 2*a*d)*cos(f*x + e)^2 - a*d + (a*c + a*d)*cos(f*x
+ e))/(c*cos(f*x + e)^2 + (c + d)*cos(f*x + e) + d)))/((c^4*d + c^3*d^2)*f*cos(f*x + e)^2 + (c^4*d + 2*c^3*d^2
 + c^2*d^3)*f*cos(f*x + e) + (c^3*d^2 + c^2*d^3)*f), -((a^2*c^3 - 2*a^2*c^2*d + a^2*c*d^2)*sqrt((a*cos(f*x + e
) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + (a^2*c^3*d + 4*a^2*c^2*d^2 - 3*a^2*c*d^3 - 2*a^2*d^4 + (a^2*c
^4 + 4*a^2*c^3*d - 3*a^2*c^2*d^2 - 2*a^2*c*d^3)*cos(f*x + e)^2 + (a^2*c^4 + 5*a^2*c^3*d + a^2*c^2*d^2 - 5*a^2*
c*d^3 - 2*a^2*d^4)*cos(f*x + e))*sqrt(a/(c*d + d^2))*arctan((c + d)*sqrt(a/(c*d + d^2))*sqrt((a*cos(f*x + e) +
 a)/cos(f*x + e))*cos(f*x + e)/(a*sin(f*x + e))) - (a^2*c*d^2 + a^2*d^3 + (a^2*c^2*d + a^2*c*d^2)*cos(f*x + e)
^2 + (a^2*c^2*d + 2*a^2*c*d^2 + a^2*d^3)*cos(f*x + e))*sqrt(-a)*log((2*a*cos(f*x + e)^2 - 2*sqrt(-a)*sqrt((a*c
os(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + a*cos(f*x + e) - a)/(cos(f*x + e) + 1)))/((c^4*d +
c^3*d^2)*f*cos(f*x + e)^2 + (c^4*d + 2*c^3*d^2 + c^2*d^3)*f*cos(f*x + e) + (c^3*d^2 + c^2*d^3)*f), -((a^2*c^3
- 2*a^2*c^2*d + a^2*c*d^2)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + (a^2*c^3*d + 4*
a^2*c^2*d^2 - 3*a^2*c*d^3 - 2*a^2*d^4 + (a^2*c^4 + 4*a^2*c^3*d - 3*a^2*c^2*d^2 - 2*a^2*c*d^3)*cos(f*x + e)^2 +
 (a^2*c^4 + 5*a^2*c^3*d + a^2*c^2*d^2 - 5*a^2*c*d^3 - 2*a^2*d^4)*cos(f*x + e))*sqrt(a/(c*d + d^2))*arctan((c +
 d)*sqrt(a/(c*d + d^2))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)/(a*sin(f*x + e))) + 2*(a^2*c*d^2
+ a^2*d^3 + (a^2*c^2*d + a^2*c*d^2)*cos(f*x + e)^2 + (a^2*c^2*d + 2*a^2*c*d^2 + a^2*d^3)*cos(f*x + e))*sqrt(a)
*arctan(sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)/(sqrt(a)*sin(f*x + e))))/((c^4*d + c^3*d^2)*f*cos
(f*x + e)^2 + (c^4*d + 2*c^3*d^2 + c^2*d^3)*f*cos(f*x + e) + (c^3*d^2 + c^2*d^3)*f)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))**(5/2)/(c+d*sec(f*x+e))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(5/2)/(c+d*sec(f*x+e))^2,x, algorithm="giac")

[Out]

Timed out